
Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life

Lilu Liu^a, Xingguo Qi^a, Qiang Ma^b, Xiaohui Rong^a, Yong-Sheng Hu^{a*}, Zhibin Zhou^b, Hong Li^a, Xuejie Huang^a, Liquan Chen^a

 ^a Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences
^b Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology

E-mail: liluliu@iphy.ac.cn

A non-sintered method with toothpaste electrode for improving electrode ionic conductivity and reducing interface impedance is introduced in solid-state rechargeable batteries. At 70 °C, this novel solid-state battery can deliver a capacity of 80 mAh g⁻¹ in a voltage range of 2.5–3.8 V at 0.1C rate using layered oxide Na_{0.66}Ni_{0.33}Mn_{0.67}O₂, Na- β "-Al₂O₃ and sodium metal as cathode, electrolyte and anode, respectively. Moreover, the battery shows a superior stability and high reversibility, with a capacity retention of 90% after 10 000 cycles at 6C rate and a capacity of 79 mAh g⁻¹ is recovered when the current rate is returned to 0.1C. Furthermore, a very thick electrode with active material mass loading of 6 mg cm⁻² also presents a reasonable electrochemical performance. These results demonstrate that this is a promising approach to solve the interface problem and would open a new route in designing the next generation solid-state battery.

Figure 1. Schematic diagrams of (a) a conventional sintering type and (b) the designed new type solid-state battery based on an inorganic ceramic electrolyte. (c) Long-term cycling performance. Specific capacity and Coulombic efficiency versus cycle number at 6C rate.

References:

[1] Lilu Liu, Xingguo Qi and Yong-Sheng Hu et al., ACS Appl. Mater. Interfaces (2016) 8, 32631–32636.