Investigation of New Phosphorous-free Thio-LISICON Phases as Solid State Electrolytes

<u>Bernhard T. Leube</u>^a, Kenneth Inglis^a, Elliot Carrington^a, Michael J. Pitcher^a, J. Felix Shin^a, Hongjun Niu^a, John B. Claridge^a, Frederic Blanc^b, Laurence Hardwick^b and Matthew J. Rosseinsky^a

^a Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom ^b Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZD, United Kingdom

leubeb@liv.ac.uk

The development of solid lithium ion conductors is a crucial step towards all-solid lithium ion batteries. These could benefit from increased safety, improved compatibility to new anode and cathode materials and increased long-term stability. New thio-phosphate and thio-germanate based materials have recently emerged as the leading solid state electrolytes with exceptionally high conductivities and good mechanical properties.[1] Especially Li₁₀GeP₂S₁₂ and the Li-argyrodite Li₆PS₅X (X= Cl, Br, I) family stand out with RT conductivities of 1.2×10^{-2} S cm⁻¹ and 10^{-4} S cm⁻¹ respectively, which are comparable to commercial liquid-based electrolytes.[2, 3] Both materials comprise unusual anion-sublattices, the argyrodite phase is based on a tetrahedral close packing while Li₁₀GeP₂S₁₂ is related to a body-centred cubic packing. The $M^{4+/5+}$ cations are tetrahedrally coordinated while lithium ions can be coordinated octahedrally or tetrahedrally. Accordingly Li₁₀GeP₂S₁₂ is based on a framework of [GeS₄]⁴⁻ and [PS₄]³⁻ tetrahedra and mobile tetrahedral/octahedral lithium ions.

But those materials suffer inherently from poor stability towards the electrode materials. Computational and experimental studies of the $\text{Li}/\text{Li}_6\text{PS}_5\text{Cl}$ and $\text{Li}/\text{Li}_{10}\text{GeP}_2\text{S}_{12}$ interface respectively show that especially thiophosphate is prone to reduction to LiP and Li₃P.[4, 5]

This research focuses on the discovery and characterization of new sulphide based phosphorous-free phases. Synchrotron PXRD, neutron scattering and NMR were employed to solve the crystal structures while ICP confirmed the proposed compositions. AC-impedance spectroscopy and ⁷Li dynamic NMR showed high lithium mobility ~ $4x10^{-5}$ S/cm and chemical stability was tested against lithium metal. We compare the structures, stabilities and conductivities of the new phases with those of Li₁₀GeP₂S₁₂ and Li₆PS₅X to gain new insight into the search for workable electrolytes in this class of materials.

References:

[1] W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, G. Ceder, Chem. Mater. 28 (2016) 266-273.

- [2] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsue, Nat. Mater. (2011) 682-686.
- [3] R. P. Rao, S. Adams, Phys. Status solidi A 208 (2011) 1804-1807.

[4] T. Cheng, B. V. Merinov, S. Morozov, W. A. Goddard, III, ACS Energy Lett. 2 (2017) 1454-1459.

[5] S. Wenzel, S. Randau, T. Leichtweiss, D. A. Weber, J. Sann, W. G. Zeier, J. Janek, Chem. Mater. 28 (2016) 2400-2407.