Next generation High nickel Core-Shell structure Cathode (Li[Ni0.95C00.025Mn0.025]O2) for Long term cycling and High-Energy Density Lithium-Ion Batteries

<u>Un-Hyuck Kim</u>^a, Jae-Hyung Kim^a and Yang-Kook Sun^{a,*} ^a Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea

E-mail: yksun@hanyang.ac.kr

A core-shell structured cathode with a LiNiO₂ core and Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O₂ shell, resulting in an average composition of Li[Ni_{0.95}Co_{0.025}Mn_{0.025}]O₂, was synthesized via the coprecipitation method. The core material, LiNiO₂, designed to maximize the specific capacity, was protected by a 500-nm-thick encapsulating Li[Ni_{0.87}Co_{0.065}Mn_{0.065}]O₂ shell layer to improve the structural stability. The core-shell cathode delivered an initial discharge capacity of 235.7 mAh g⁻¹ at 0.1 C (18 mA g⁻¹) and 90% of its initial capacity was maintained after 100 cycles at 0.5 C (90 mA g⁻¹), whereas the capacity retention of the LiNiO₂ cathode without the protective shell was limited to 74.2% after 100 cycles.^{1,2} The improved cycling stability of the core-shell cathode was also verified in a full cell test (against graphite anode at 1 C) in which the CS cathode also clearly outperformed the LiNiO₂ cathode. The improved cycling performance is mainly attributed to stabilization of the inherently reactive LiNiO₂ surface by the Ni-depleted protective shell layer.³ The proposed core-shell approach allows harnessing of the high capacity of LiNiO₂ and other extremely Ni-rich compositions with dramatically improved capacity retention, thus moving closer to satisfying the high-energy density and long lifetime requirements for lithium-ion batteries for electric vehicles.⁴

Reference

^[1] S.-T. Myung, F. Maglia, K.-J. Park, Chong S. Yoon, P. Lamp, S.-J. Kim, Y.-K. Sun, ACS Energy Lett. 2017, 2, 196–223.

^[2] K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, Y.-K. Sun J. Electrochem. Soc. 2007, 154, A971-A977.

^[3] Chong S. Yoon, M. H. Choi, B.-B. Lim, E.-J. Lee, Y.-K. Sun J. Electrochem. Soc. 2015, 162, A2483-A2489

^[4]Y.-K. Sun, S.-T. Myung, M.-H. Kim, J. Prakash, K. Amine J. Am. Chem. Soc. 2005, 127, 13411–13418.