Investigation of degradation factor for lithium-sulfur batteries by quantitative determination analysis using UV-vis spectra

<u>Yuki Ishino</u>^a, Keitaro Takahashi^a, Wataru Murata^a, Minori Kamaya^a, Masayoshi Watanabe^b, Shiro Seki^a

^aGraduate School of Applied Chemistry and Chemical Engineering, Kogakuin University, Tokyo, Japan ^bGraduate School of Engineering, Yokohama National University, Kanagawa, Japan

E-mail: b514009@ns.kogakuin.co.jp

Lithium-sulfur (Li-S) battery is expected for next generation rechargeable battery owing to have high capacity (1,645 mAh/g). The key issues of Li-S battery for cycle performances are the dissolution of lithium polysulfide as Li_2S_x . If we can suppress the dissolution of Li_2S_x , the battery life should be extended.

Solvate ionic liquid (SIL) is mixture of 1:1 complex from low-molecular weight ether and Li salt, which have high thermal/electrochemical stabilities owing to strong interaction of between ether oxygen and Li cation. Also SIL electrolyte can suppress the dissolution of Li_2S_x . Recently, high Li salt concentration more than conventional SIL into electrolyte is important for high performance LIBs and Li-S batteries not only the high stability but also low Lewis basicity of electrolytes for low solubility of impurity with charge/discharge. Fig. 1 shows cycle performance of LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ | [Li(G3)_x]TFSA | Li cell. Excess Li salts achieved high cycle performances and stable charge-discharge operations [1].

However, quantitative analysis for dissolution of Li_2S_x into SIL has not investigated. In this study, to make clear relationship between composition ratio and dissolution of Li_2S_x , saturated solubilities of Li_2S_x were measured by electrochemical and UV-vis spectra.

Fig. 2 Prepared SIL samples with saturated Li₂S_{8.}

Given amounts of glyme (G3,tryglyme) and LiTFSA of 10:8, 10:9, 10:10, 10:9 and 10:8(molar ratio) were prepared. Mixture of S_8 and Li₂S (S_8 :Li₂S=7:8, Li₂S_8) were prepared. Fig. 2 shows appearances of five LiTFSA concentration SILs with saturated Li₂S₈. Then oxidize Li₂S₈ to S_8 and quantitative analysis using UV-vis spectra were carried out.

In the presentation, we will report to results of electrochemical and UV-vis spectra, and correlation of between dissolution amount of Li_2S_x and battery performances.

Reference:

[1] S.Seki et. al, RSC Adv., 6, 33049-33047 (2016).