Unfolding the Reversible Phase Transition for Insertion Mechanism of Surface Modified-Anatase TiO₂ through Impedance Analysis

Winda Devina^a, Jaehoon Kim^{a,b,c}

^a Sungkyun Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-Gu, Suwon, Gyeonggi-Do 16419, Republic of Korea
^b School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangangu, Suwon, Gyeonggi-do 16419, Republic of Korea
^c School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do 16419, Republic of Korea

E-mail: windadevinaa@gmail.com

A noteworthy material, TiO₂, has been received a considerable attention as a potential anode material for rechargeable batteries because of its outstanding stability. In this work, mesoporous TiO_2 particles were prepared by one-pot synthesis in supercritical fluid. To enhance its electrochemical performance, in-situ surface modification of TiO₂ in the supercritical fluid and subsequent carbon-coating was performed. As a surface modifier and carbon precursor, the mixture of citric acid and PEG-methyl ether (CA/PEG-ME) was added. The as-prepared polymeric coated-TiO₂ nanocomposite exhibited an excellent Li⁺/Na⁺-ion insertion, leading to high reversible discharge capacity of 250 mAh g⁻¹ for LIBs and 280 mAh g⁻¹ for SIBs at 0.1 C-rate, respectively. To reveal the kinetic process during the Li⁺/Na⁺ insertion/extraction, electrochemical impedance spectroscopy (EIS) was employed for CA/PEG-ME@TiO₂ electrode at different state-of-charge according to the galvanotactic profiles. The impedance analysis displays the contribution of both surface resistance (R_e) and charge transfer resistance in the bulk phase (R_{ct}) during Li/Na⁺ insertion. The surface process is dominated by a passivation solid electrolyte layer (SEI) formation, which formed during the ion insertion and underwent decomposition during the ion extraction confirming the cells withstand a reversible phase transition during Li⁺/Na⁺ insertion/extraction process.

Figure 1. Schematic illustration of the fabrication process and electrochemical performance.

References:

- [1] S.S. Zhang, K. Xu, T.R. Jow, Electrochimica Acta 51 (2006) 1636-1640.
- [2] Ji-Yong Shin, Dominik Samuelis, Joachim Maier, Adv. Funct. Mat. 21 (2011) 3464-3472.
- [3] A.D.C. Permana, et al., Chemical Engineering Journal 241 (2014) 216-227.
- [4] Liming Wu, et al., Adv. Energy Mat. 5 (2015) 1401142