Improvement of Rate Performance of LiFePO₄ Cathode with Porous LiFePO₄/Activated Carbon Hybrid Electrode Structure

<u>Takashi Tsuda</u>^a, Nobuo Ando^b, Toyokazu Tanabe^a, Kaoru Itagaki^c, Naohiko Soma^c, Susumu Nakamura^d, Narumi Hayashi^e, Futoshi Matsumoto^a

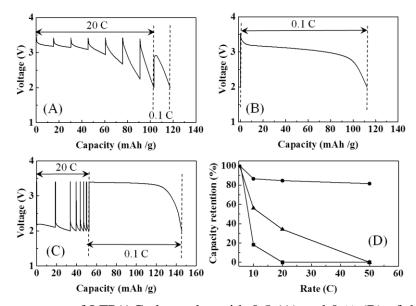
^a Department of Materials and Life Chemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan

^b Research Institute for Engineering, Kanagawa University,

3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan

^c Wired Co., Ltd., 1628 Hitotsuyashiki shinden, Sanjo, Niigata 959-1152, Japan

^d Department of Electrical and Electronic Systems Engineering, National Institute of


Technology, Nagaoka College, 888 Nishikatakai, Nagaoka, Niigata 940-8532, Japan

^e Industrial Research Institute of Niigata Prefecture, 1-11-1 Abuminishi, Chuo-ku, Niigata-shi,

Niigata, 950-0915, Japan

E-mail: fmatsumoto@kanagawa-u.ac.jp

In order to improve the rate performance of cathodes in lithium ion battery (LIB), LiFePO₄ (LFP)/activated carbon (AC) hybrid cathode was developed. After preparing LFP and AC layers on each face of an aluminum current collector, through-holes with the pore diameter of 22 μ m and opening rate of 0.5 % were formed on the electrode with pico-second pulsed laser. A half cell was fabricated with the electrode and two lithium (Li) metal electrodes. The half-cell exhibited much improvement of rate performance (Fig. 1). Because the LFP/AC electrode having no through holes and LFP electrode did not exhibit the improvement, it was considered that energy and Li⁺ transfer occurred between LFP and AC layers, and Li⁺ passed through the holes from AC to LFP.

Fig. 1 Discharge curves of LFP/AC electrodes with 0.5 (A) and 0 % (B) of the opening rate of hole and 22 μ m of average hole diameter, and LFP electrode (C) at 20 C, where the discharge of 20 mAhg⁻¹ was repeated by 7 times and then the cells were finally discharged at 0.1 C, and the open circuit time (5 min) was inserted between discharge processes. (D) Total discharge capacity observed after 7 times-discharge/open circuit processes *vs.* the discharge rate. **•**: LFP/AC electrode with 0.5 % of the opening rate, **•**: LFP/AC electrode with 0 % of the opening rate, **•**: LFP electrode.