# **Rigid TiO<sub>2-x</sub> Coating on Mesoporous Hollow Si Spheres with High Structure Stability for High Performance Lithium-Ion Battery**

<u>Yongli Yu</u><sup>a</sup>, Xu Chen<sup>a</sup>, Wensheng Yang<sup>a</sup>, Junfeng Rong<sup>b</sup>

<sup>a</sup>State Key Laboratory of Chemical Resourcr Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

<sup>b</sup>The State Key Laboratory of Catalytic Material and Reaction Engineering, Sinopec Research Institute of Petroleum Processing, Beijing, 100029, China

## E-mail: rongjf.ripp@sinopec.com

High-energy-density Li-ion batteries with long-cycle and high-rate performances are in great demand for the development of electric vehicles [1, 2]. Silicon is regarded as a potential alternative to commercially used graphite due to its high theoretical capacity (4200 mAh $\cdot$ g<sup>-1</sup>). Unfortunately, particle pulverization resulting from the tremendous volume change during operation and inherently low electrical conductivity seriously limit its electrochemical performance and large-scale application.

In this work, we developed a facile approach for the fabrication of mesoporous hollow silicon spheres@TiO<sub>2-x</sub> (MHSi@TiO<sub>2-x</sub>) nanocomposite through the magnesiothermic reduction of hollow silica nanospheres, in situ tetrabutyltitanate hydrolysis on the MHSi surface, and sequent calcination in inert atmosphere.

# **Results and Discussion**

As shown in Figure 1, the mesoporous hollow structure can be clearly observed, and the mesoporous Si is surrounded by a uniform TiO<sub>2-x</sub> coating layer. At a current density of 2 A.  $g^{-1}$ , MHSi@TiO<sub>2-x</sub> delivers a high reversible specific capacity of 1303.1 mAh·g<sup>-1</sup>, and 84.5% capacity retention after 500 cycles.



Figure 1. (a,b) HRTEM images of the MHSi@TiO<sub>2-x</sub> composite, (c) Cyclic performance of MHSi and MHSi@TiO<sub>2-x</sub> at 2 A·g<sup>-1</sup>.

### Conclusion

In summary, an interface-engineered Si-based anode with a mechanically and electrically robust structure has been synthesized via a facile method. The conductive TiO<sub>2-x</sub> shell not only enhances the transport kinetics of electron and Li<sup>+</sup>, but also provides a rigid structure with high mechanical stability to confine the outward expansion of Si, maintaining the structural integrity and a stable SEI. The mesoporous hollow structure provides enough void space for expansion of Si, effectively buffering large volume change. As a result,  $MHSi@TiO_{2-x}$  anode yields excellent cycling stability and superior rate capability.

#### **References:**

[1] Y. Jin, S. Li, A. Kushima, Y. Cui, et al. Energy Environ. Sci. 10 (2017) 580-592.

[2] M. Gu, Y. He, J. Zheng, C. Wang, Nano Energy 17 (2015) 366–383.